Exercise 178

A particle travels in a circular path at a constant angular speed ω. The angular speed is modeled by the function $\omega=9|\cos (\pi t-\pi / 12)|$. Determine the angular speed at $t=9 \mathrm{sec}$.
[TYPO: ω is not constant, though; the given function models it.]

Solution

Plug $t=9$ into the given function.

$$
\omega(t)=9\left|\cos \left(\pi t-\frac{\pi}{12}\right)\right| \Rightarrow \omega(9)=9\left|\cos \left(\pi \times 9-\frac{\pi}{12}\right)\right|=\frac{9(1+\sqrt{3})}{2 \sqrt{2}} \approx 8.69 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Below is a plot of ω versus t.

